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Abstract—A new explicit fourth-order finite-difference time-do-
main (FDTD) scheme for three-dimensional electromagnetic-field
simulation is proposed in this paper. A symplectic integrator prop-
agator, which is also known as a decomposition of the exponential
operator or a general propagation technique, is directly applied
to Maxwell’s equations in the scheme. The scheme is nondissipa-
tive and saves memory. The Courant stability limit of the scheme
is 30% larger than that of the standard FDTD method. The per-
fectly matched layer absorbing boundary condition is applicable
to the scheme. A specific eigenmode of a waveguide is successfully
excited in the scheme. Stable and accurate performance is demon-
strated by numerical examples.

Index Terms—Electromagnetic fields, FDTD methods, numer-
ical analysis, time-domain analysis.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method has
been used extensively for electromagnetic-field simula-

tion [1], [2]. A problem with this method is its demand for
vast computational resources. One solution is to use a scheme
whose accuracy is higher than that of the standard FDTD
method to reduce the required memory size. Decreasing grid
dispersion results in reduced memory usage and CPU time
for a given phase accuracy. The standard FDTD method [1] is
second-order accurate in time and space. A couple of higher
order differencing schemes have been proposed [3]–[8].

One approach to obtaining higher order differencing schemes
involves the elimination of the second-order truncation errors
in time using the relationship between the third-order differen-
tials in space [3], [4]. When the permittivity or permeability is
variable in space, scheme construction by this approach is com-
plicated because of the requirement for the approximations of
the second-order space derivatives of the permeability or per-
mittivity. Another approach is the application of the explicit
Runge–Kutta method. The schemes using the conventional ex-
plicit Runge–Kutta method are dissipative [5]–[7]. Thus, they
produce not only phase error, but also amplitude error. More-
over, they require additional memory for temporary storage of
data for the internal stages.

Manuscript received February 4, 2000; revised October 16, 2000.
T. Hirono and Y. Yoshikuni are with the NTT Photonics Laboratories, Kana-

gawa 243-0198, Japan (e-mail: tuhirono@aecl.ntt.co.jp).
W. Lui was with the NTT Photonics Laboratories, Kanagawa 243-0198,

Japan. He is now with Lightwave Microsystems, San Jose, CA 95134 USA
(e-mail: wlui@lightwavemicro.com).

S. Seki is with Corporate Strategy, NTT Electronics Corporation, Tokyo 150-
0043, Japan.

Publisher Item Identifier S 0018-9480(01)07591-3.

The authors proposed a two-dimensional (2-D) scheme with
fourth-order accuracy in time and space [8]. The scheme is
based on the explicit symplectic integrator, which is a time-in-
tegration method specialized for Hamiltonian systems [9], [10].
Schemes using the symplectic integrator are nondissipative
and do not require additional memory for temporary data
storage. Stable and accurate performance with lower memory
usage have been demonstrated [11]. However, the rigorous
application of the symplectic integrator to three-dimensional
(3-D) problems is rather complicated because it requires
discretization of the Hamiltonian of the electromagnetic field
in three dimensions. In this paper, the authors directly apply the
propagator of the symplectic integrator to Maxwell’s equations
for the first time and obtain a concise fourth-order scheme. The
good performance of the scheme is demonstrated by numerical
examples.

II. FORMULATION

First, we outline the symplectic integrator propagator. The
linear differential equation for a vectoris

(1)

where is a matrix. The solution after a time step is ex-
pressed by the exponential operator as

(2)

(3)

where is the initial value and is the identity matrix. In
general, cannot be obtained explicitly. Here, we fur-
ther assume that is the sum of two matrices and , whose
exponential operators and are easily cal-
culated explicitly. If and commute as

(4)

is easily obtained as

(5)

When and do not commute, (5) is not valid. In this situ-
ation, is approximated by the symplectic integrator
propagator. The propagator is the multiproduct of the exponen-
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tial operator of and that of . The propagator approximates
as

(6)
where and are real coefficients characterizing the propa-
gator, is the order of the approximation, and is the stage
number of the propagator. The propagator has also been re-
ferred to as a decomposition of the exponential operator [12]
or a general propagation technique [13]. The solution of (1) is
approximated by applying the integrator step by step. Coeffi-
cients and have been studied extensively for
[12]–[17]. The stage number is equal to or greater than the
order for the propagators described in the references. Exam-
ples of coefficients for second- and fourth-order approximation
are listed in Table I. These coefficients obey the symmetry rela-
tions , ,
and . The second-order coefficients make a propagator
equivalent to the so-called leapfrog scheme.

Maxwell’s equations in an isotropic, lossless, and sourceless
medium are written in a matrix form as

(7)

(8)

(9)

where is the magnetic-field vector, is the electric-field
vector, is the 3 3 zero matrix, is the 3 3 matrix rep-
resenting the curl operator, is the permeability, and is the
permittivity. The evolution of the electromagnetic field during
the time-step is exactly expressed by the exponential oper-
ator . The matrix is the sum of the matrices and

, i.e.,

(10)

where

(11)

(12)

Since is zero,

(13)

where is the 6 6 identity matrix. The operator
is expressed similarly as

(14)

Thus, and are obtained explicitely. The

TABLE I
COEFFICIENTS OF THESYMPLECTIC INTEGRATOR PROPAGATORS

(c = c (0 < p < m+ 1); d = d (0 < p < m); d = 0)

matrices and do not cummute, i.e.,

(15)

Therefore, the symplectic integrator is applicable to Maxwell’s
equations. When one uses coefficientsand of order and
substitutes the space difference operators withth-order accu-
racy for the first-order partial differential operators in, an
FDTD scheme of th order in time and th order in space is
obtained. In this paper, the Yee lattice [1], [2] is used for dis-
cretizing volume into cells and the space increments in the-,
-, and -directions are described as , , and . When

the second-order coefficients in Table I and second-order space
difference operators, such as

(16)

are used, the standard FDTD method is obtained, which is here-
after referred to as the scheme. The proposed 3-D fourth-
order scheme is obtained, when the fourth-order coefficients in
Table I and fourth-order space difference operators, such as

(17)

are used. The proposed scheme is referred to as the
scheme. The time-step diagrams of the and
schemes are shown in Fig. 1. In Fig. 1, thick straight arrows
at the top and bottom express the passage of time, and the
tick marks on the arrows represent the stages of the schemes.
Curved black arrows with the boxes represent the calculations
from one stage to the next. The dotted arrows show which elec-
tromagnetic component is used in the calculation. In the
scheme, the calculation of for the transition
from to and the calculation of
for the transition from to are usually combined
into one calculation of for the transition from

to . In the scheme, the calculations of
and can also be combined into one

calculation of . In this paper, we assume
that the permeability is constant throughout the simulation
domain. For example, the detailed expressions of theand

components at the third stage in the scheme are as
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(a)

(b)

Fig. 1. (a) Time-step diagram of the(2; 2) scheme (standard scheme). (b) Time-step diagram of the(4; 4) scheme (proposed scheme).

follows:

(18)

(19)
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where , , ,
and are the permittivities for the simulation.
The calculations for (18) and (19) are, respectively, represented
by and in the boxes in Fig. 1(b).
Equations (18) and (19) show that, in the scheme, the
changes in the electromagnetic-field values from one stage to
the next are calculated with the fourth-order space difference
operator. In the scheme, the changes are calculated with
the second-order space difference operator. Fig. 1(b) and (18)
and (19) show the simple iterative character of the scheme.
Since the field data is successively rewritten by new data, no ad-
ditional memory for temporary storage of internal stage data is
required. The scheme is an improved version of the
scheme for high accuracy.

In this paper, the authors propose two methods for the setting
of the permittivities for the simulation. When the spacial vari-
ation of the permittivity is continuous, the permittivity at point

can be used for ,
, , and . This method is

referred to as method I. For the case of a dielectric interface in
the simulated domain, the setting for the nodes in the vicinity of
the interface has not been clarified completely. It is now being
studied. For the 2-D TM polarization case, with the interface
located on the nodes of the magnetic components, method I
brings second-order accuracy in the reflectivity and transmis-
sivity. This is proven by the extended discussion of the inter-
face condition for the scheme [18]. At present, the authors
conjecture that the following method (method II) gives accurate
results for an ordinary problem with arbitrarily arranged dielec-
tric interfaces. The averaged permittivity over the segment be-
tween and is used
for , the averaged permittivity over the seg-
ment between and
for , the averaged permittivity over the seg-
ment between and for

, and the averaged permittivity over the seg-
ment between and
for .

The above basic formulation can be extended for a medium
with loss and/or a source. When the medium has conductivity,
matrices , , , and are modified to
(20)–(23), shown at the bottom of this page, whereis the
magnetic conductivity, is the electric conductivity, and
is the 3 3 identity matrix, and the fourth-order symplectic
integrator propagator is still applicable. The fourth-order
approximations for exponential functions

(24)

(25)

are useful for the numerical calculation of and
. This modified scheme is also applicable to per-

fectly matched layers (PMLs) [19]. The reflectivity of the PML
for the scheme is as low as that for the scheme [20].

When the source exists, the term expressing it is added to the
expressions for field evolution. For example, when the-com-
ponent of the current density is not zero, the term

, where

(26)

is added to the right-hand side of (19).

III. B ASIC PROPERTIES OF THESCHEME

The features of the scheme are assessed by the solution
growth factor of a numerical wave mode in a grid. The factor

(20)

(21)

(22)

(23)



1644 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 9, SEPTEMBER 2001

is the ratio of the field amplitude of the numerical mode at a
time to that at the time before the time step. To guarantee
numerical stability of the simulation, the inequality

(27)

should be satisfied for all numerical modes. The condition in
(27) determines the maximum time-step attainable with
the given space increments , , and . When the modulus
of the factor is equal to one for all numerical modes under the
condition , the scheme is nondissipative.

When the medium is uniform, the factor for the
scheme is given by (28)–(34), shown at the bottom of this
page, where , , and are, respectively, the components
of the wavenumber of the numerical mode in the-, -, and
-directions. Since is a real number, the condition in (27) is

equivalent to

(35)

Moreover, if the condition in (35) is satisfied, the modulus of the
factor is equal to one. Thus, the scheme is nondissipa-
tive. The radian frequencyof the numerical mode is expressed
as

(36)

By employing the numerical search on the condition in (35),
is obtained. The phase velocity error of the scheme is

examined using (36).
The stability of the scheme is assessed by the Courant sta-

bility limit , which is obtained from for the cubic
grid as

(37)

Table II shows the Courant stability limits of the and
schemes. The limit of the scheme is 30% larger than that
of the scheme. Fig. 2 shows the maximum phase velocity
error as a function of the cell numbers per wavelength at the

TABLE II
COURANT STABILITY LIMITS (� ) OF THE(2; 2) AND (4; 4) SCHEMES

Fig. 2. Phase velocity errors as a function of cell numbers per wavelength on
the cubic lattice at the Courant stability limit.

stability limit of each scheme. The fourth-order accuracy of the
scheme, which is built into it, is shown by the solid line.

IV. M EMORY AND NUMBER OF COMPUTATIONS

The memory and number of the computations of the
and schemes for 3-D simulation are compared using as
the criterion the dispersion error of 1per wavelength in a cubic
lattice. This criterion was proposed in 1993 by Shlageret al.
[21]. To obtain this accuracy, the required cell number per wave-
length is 7.1 for the scheme and 19.9 for the
scheme. On the other hand, the floating point operations per cell

(28)

(29)

(30)

(31)

(32)

(33)

(34)
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Fig. 3. Comparison of the memory and number of computations in the
simulation for cubic cells under the condition of 1�/wavelength dispersion
error.

and time-step are 240 for the scheme and 30 for
the scheme. The number of computations is evaluated by
the product of to the fourth power, , and .
The results are shown in Fig. 3. The memory usage for the
scheme is 4% that for the scheme. The number of com-
putations is 10% that the scheme.

V. NUMERICAL EXAMPLES

A. 3-D Wave Propagation

This example is 3-D wave propagation guided by a
graded-profile fiber. The index of refraction is defined by

(38)

where is the distance from the fiber axis, is the core index,
and is the core radius. The HE modes of the fiber were ob-
tained analytically [22]. The propagation of the mode was
simulated and the phase velocity was compared to the analyt-
ical solution. The was 3.0 and was 2.0 m. The wave-
length in a vacuum was m. We used
cubic cells. The fiber axis was set on the line defined by
and . The simulated domain was defined by

m m , where is the wavelength in
the fiber, which is expressed as

m (39)

where is the analytically obtained propagation constant. For
the initial condition, analytically obtained values of electromag-
netic components were assigned to the nodes in the domain.
Since the -direction length of the domain was equal to the
wavelength in the fiber and the magnitude of the field near the
boundaries defined by m or m was neg-
ligibly small, the periodic boundary condition could be applied
for the simulation. Method I was used to set the permittivities
for the simulation. The Courant–Friedrichs–Levy (CFL) num-
bers were 0.743 for the scheme and 0.577 for the
scheme. Fig. 4 shows the phase velocity error as a function of

Fig. 4. Phase velocity errors for theHE mode of the graded-profile fiber.

Fig. 5. Phase velocity errors of the TM modes of a 2-D step-profile waveguide.
(a) Schematic drawing of the waveguide configuration. (b) Errors for the grid
resolution of 15 cells/(wavelength in core region).

the cell numbers per wavelength in the core . The line
for the scheme shows its fourth-order accuracy.

B. 2-D Wave Propagation

The propagations of the guided modes along the waveguide
with a step index profile were simulated in the 2-D TE polariza-
tion case. The phase velocities were compared to the analytical
solutions. The refractive indexes of the core and cladding were
3.2 and 1.0, respectively. The core width was 1.5m. The wave-
length in a vacuum was 1.55m. The waveguide supports six
guided TM modes. The waveguide configuration is schemati-
cally illustrated in Fig. 5(a). A rectangular domain whose sides
are along the - and -directions was prepared for the simula-
tion. The sides along the-direction were two times longer than
those along the-direction. The waveguide was set along the di-
agonal line. The waveguide was inclined to the coordinate axis
at an angle of 26.6 . The waveguide direction
was almost intermediate between the maximum-phase-velocity
direction (45) and the minimum-phase-velocity direction (0)
of the scheme. For the initial condition, the analytically
obtained values of the electromagnetic components are assigned
to the nodes in the domain. The length of the diagonal line was
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adjusted to be five times the wavelength in the waveguide,
which is expressed as

(40)

where is the propagation constant of the mode. By this selec-
tion of the length of the diagonal line, the assigned field values
are periodic at the boundary of the domain. Thus, the periodic
boundary condition was used for the simulation. The domain
was covered with square cells whose spacing was 1/15 of the
free propagation wavelength in the core region. Method II was
used to set the permittivities for the simulation. The CFL num-
bers were 0.743 for the scheme and 0.577 for the
scheme. Fig. 5(b) shows the phase velocity error in the TM
modes for the structure. For all guided modes, the error of the

scheme is less than 1/10 that of the scheme. The
scheme exhibits highly accurate performance in the sit-

uation where the refractive index contrast is more than 60%.
In order to obtain the same accuracy level as that of the
scheme with 15 cells/core-wavelength, the scheme re-
quires the grid resolution of 60 cells/core-wavelength.

C. Lossy Medium

This example is the simulation of the plane-wave propagation
in a medium with the electric conductivity. When, , and are
spatially uniform and , an analytical calculation shows
that a plane wave decays as follows:

(41)

(42)

(43)

(44)

where is the wave vector, is the angular fre-
quency, and is the decay rate. The other field components are
zero. In this example,, , , , and were set to , ,

S/m, 1213.95/ps, and 1/2. For the initial condition, the field
values expressed by (41)–(43) are assigned to the nodes in the
rectangular domain similar to that in the previous numerical ex-
ample. That is, the sides of the domain along the-direction
were two times longer than those along the-direction and the
length of the diagonal line was five times the wavelength. The
decay of the wave was simulated using a periodic boundary con-
dition. The cells were square. The CFL numbers were 0.743 for
the scheme and 0.577 for the scheme. Fig. 6 shows
the decay rate errors as a function of the cell numbers per wave-
length. This figure shows the fourth-order accuracy of the
scheme for a medium with loss.

Fig. 6. Decay rate errors as a function of cell numbers per wavelength.

Fig. 7. Unidirectional excitation of theTM mode of the 2-D step-profile
waveguide. (a) Schematic drawing of the simulated region. (b) ExcitedH

distribution.

D. Unidirectional Excitation

This example is the unidirectional excitation of the
mode of a 2-D step-profile waveguide. For the scheme,
such excitation is outlined in [23]. In the excitation, the
transverse components of the excited mode in the vicinity of
the incident line are intermittently incorporated with suitable
phases in the calculation of each stage. The manner of excita-
tion is extended for the scheme. The simulated domain
is schematically illustrated in Fig. 7(a). The wavelength in a
vacuum was 1.5 m. The domain with the waveguide was
surrounded by 16 PML layers. Fig. 7(b) shows the contour plot
of distribution. and were 0.0125 m and the CFL
number was 0.7. The profiles agree with the analytical ones.
The -normed error of the profile is less than 10 . The
example shows the specific waveguide mode can be excited in
simulations using the scheme.

E. Reflection at a Coated Facet

In this example, waveguide facet reflection was simulated in
the 2-D TM polarization case. The waveguide was truncated and
the facet was coated with a dielectric layer. A mode, which
was excited by the method described in the previous section, is
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Fig. 8. Simulated reflectivity of theTE mode at the coated facet as a function
of the cell number per wavelength in a vacuum, and a schematic drawing of the
simulated domain (upper left-hand-side quarter).

incident from the waveguide to the coating. The simulated do-
main is illustrated in the upper left-hand-side quarter of Fig. 8.
The whole domain was surrounded by a 16-cell PML absorber.
The effectiveness of the PML absorber in the simulation of re-
flection at the waveguide facet has been demonstrated in [24].
The wavelength in a vacuum was 0.5 m. The refractive in-
dexes of the coating were 1.24, 1.25, and 1.26. The cells were
square and the values were 0.05, 0.025, 0.0125, 0.006 25,
and 0.003 125 m in each simulation. The material interfaces
were located on the nodes of the magnetic components. Method
I was used to set the permittivities for the simulation. The CFL
number was 0.7. The reflectivity as a function of the cell num-
bers per is shown in Fig. 8. The analytically calculated reflec-
tivities based on the free-space radiation mode method [25] are
also shown by the thin dotted–dashed lines. As the cell number
increases, the reflectivity obtained by the scheme con-
verges more rapidly to the analytically calculated reflectivity
than that obtained by the scheme.

VI. SUMMARY

A new 3-D explicit fourth-order FDTD scheme has been pro-
posed based on the symplectic integrator propagator. The basic
properties of the scheme have been examined theoretically. Sev-
eral numerical examples have demonstrated its stable and accu-
rate performance. The scheme is expected to be a powerful tool
for precise simulation over an extended domain.
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