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A Three-Dimensional Fourth-Order Finite-Difference
Time-Domain Scheme Using a Symplectic
Integrator Propagator
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Abstract—A new explicit fourth-order finite-difference time-do- The authors proposed a two-dimensional (2-D) scheme with
main (FDTD) scheme for three-dimensional electromagnetic-field fourth-order accuracy in time and space [8]. The scheme is
simulation is proposed in this paper. A symplectic integrator prop- based on the explicit symplectic integrator, which is a time-in-

agator, which is also known as a decomposition of the exponential - 2 . .
operator or a general propagation technique, is directly applied tegration method specialized for Hamiltonian systems [9], [10].

to Maxwell’s equations in the scheme. The scheme is nondissipa-Schemes using the symplectic integrator are nondissipative
tive and saves memory. The Courant stability limit of the scheme and do not require additional memory for temporary data
is 30% larger than that of the standard FDTD method. The per-  storage. Stable and accurate performance with lower memory
fectly matched layer absorbing boundary condition is applicable usage have been demonstrated [11]. However, the rigorous
to the scheme. A specific eigenmode of a waveguide is successfullyé1 licati f th lectic int for to th ,d' ’ |
excited in the scheme. Stable and accurate performance is demon- pplication o e, symplectic in egra or 1o three- |.menS|0.na
strated by numerical examples. (3-D) problems is rather complicated because it requires
discretization of the Hamiltonian of the electromagnetic field
in three dimensions. In this paper, the authors directly apply the
propagator of the symplectic integrator to Maxwell’s equations
for the first time and obtain a concise fourth-order scheme. The
. INTRODUCTION good performance of the scheme is demonstrated by numerical

HE finite-difference time-domain (FDTD) method ha£xamples.

been used extensively for electromagnetic-field simula-
tion [1], [2]. A problem with this method is its demand for Il. FORMULATION
vast computationgl resources. One solution is to use a SChem?irst, we outline the symplectic integrator propagator. The
whose accuracy is hlgher'than that of tlhe standard_ FD-'TBeardifferential equation for a vectaris
method to reduce the required memory size. Decreasing grid
dispersion results in reduced memory usage and CPU time dx
for a given phase accuracy. The standard FDTD method [1] is - Cx (1)
second-order accurate in time and space. A couple of higher ] . . ) ]
order differencing schemes have been proposed [3]-[8]. whereC' is a matrix. The solution after a time stéy is ex-

One approach to obtaining higher order differencing schem@§ssed by the exponential operatep(A.C) as

involves the elimination of the second-order truncation errors
in time using the relationship between the third-order differen- X(A¢) = eXP(AtC)X(Oz \ . (2)
tials in space [3], [4]. When the permittivity or permeability is _ A o AV o AV 4
variable in space, scheme construction by this approach is ORI C) =T+ A0 5O O - (3)
plicated because of the requirement for the approximations of , o ) ) ) )
the second-order space derivatives of the permeability or pgjjerex(o) is the initial value a”q’ Is the |(_1e_nt|ty matrix. In
mittivity. Another approach is the application of the explicigeneraleXp(AtC) _cannot be obtained ex_pI|C|tIy. Here, we fur-
Runge—Kutta method. The schemes using the conventional g;g_r assume that' i the sum of two matriced and B, whose
plicit Runge—Kutta method are dissipative [5]-[7]. Thus, thegponentlal operatokscp(A; A) andexp(A, B) are easily cal-
produce not only phase error, but also amplitude error. Morkdlated explicitly. IfA and 5 commute as
over, they require additional memory for temporary storage of

Index Terms—Electromagnetic fields, FDTD methods, numer-
ical analysis, time-domain analysis.

data for the internal stages. AB = BA. )
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tial operator ofA and that ofB. The propagator approximates TABLE |
exp(AtC’) as _COEFFICIENTS OF THES(MPLECTIC_INTEGRATOR PROPAGATORS_
(cp = Cmg1—p O<p<m+1),d, =dp,_, (0<p<m),d, =0)
m
exp(A:C) = H exp(dpAiB) exp(cpArA) + O((At)n+l) 2nd-order 4th-order
p=1 (6) 2-stage 5-stage®

wherec, andd, are real coefficients characterizing the propa- o 05 0.17399689146541
gator,n is the order of the approximation, amd is the stage . Lo 0623793045132
number of the propagator. The propagator has also been re- ! ' i
ferred to as a decomposition of the exponential operator [12] ° 0.5 -0.12038504121430
or a general propagation technique [13]. The solution of (1) is dp 0.0 -0.12337932451322
approximated by applying the integrator step by step. Coeffi- c3 - 0.89277629949778
cientsc, andd, have been studied extensively far < 15 dy B dy
[12]-[17]. The stage number is equal to or greater than the
ordern for the propagators described in the references. Exam- *Reference 13.

ples of coefficients for second- and fourth-order approximation
are listed in Table I. These coefficients obey the symmetry relaatricesl/ andV do not cummute, i.e.,
tionsc, = cmt1—p (0 < p < m+1),dp = dr—p (0 < p < M),
andd,,, = 0. The second-order coefficients make a propagator Uv #VU. (15)
equivalent to the so-called leapfrog scheme.

Maxwell's equations in an isotropic, lossless, and sourcel
medium are written in a matrix form as

'Egerefore, the symplectic integrator is applicable to Maxwell's
e i -

equations. When one uses coefficiefsandd,, of ordern and
substitutes the space difference operators Wwithiorder accu-

9 <H> -W <H> (7) racy for the first-order partial differential operators iy an
ot \ E E FDTD scheme ofuth order in time and:th order in space is
{0} —u 'R obta_1ir_1ed. In this paper, the Yee lattice [1]_, [2] is used_ for dis-
W= 'R {0} (8)  cretizing volume into cells and the space increments in:the
P 9 y-, and z-directions are described @s., A,, andA.. When
0 - = the second-order coefficients in Table | and second-order space
9z dy difference operators, such as
r=| £ o _2 ©)
' 9z Ox OfN _ Jivr2 = Jicie (16)
9 9 ox ).~ A,
dy Oz

are used, the standard FDTD method is obtained, which is here-
vector,{0} is the 3x 3 zero matrix,R is the 3x 3 matrix rep- after referred to as the, 2) scheme. The proposed 3-D fourth-
order scheme is obtained, when the fourth-order coefficients in

resenting the curl operatar, is the permeability, and is the .
permittivity. The evolution of the electromagnetic field duringTable | and fourth-order space difference operators, such as

the time-stepd, is exactly expressed by the exponential oper- /¢ 27(fix1/2 — fic1/2) — fivase + fizas2
atorexp(A,W). The matrixi¥ is the sum of the matricd$ and <%) o~ 24A
V,ie., ‘ ‘

where H is the magnetic-field vecto: is the electric-field

17)

are used. The proposed scheme is referred to ag4hg
W=U+V (10) scheme. The time-step diagrams of th&2) and (4,4)
schemes are shown in Fig. 1. In Fig. 1, thick straight arrows

where .
at the top and bottom express the passage of time, and the
U— {0}y —p'R (11) tick marks on the arrows represent the stages of the schemes.
1 {o 0 urved black arrows with the boxes represent the calculations
0 0] C d black hthe b h lcul
from one stage to the next. The dotted arrows show which elec-
V= ‘Eq} {0} ) (12) tromagnetic component is used in the calculation. In(the)
e 'R {0} scheme, the calculation efkp((1/2)A,U) for the transition

from H"~/2 to H™ and the calculation oéxp((1/2)A.U)
for the transition fromH™ to H**+%/2 are usually combined
exp(A) = I 4+ AU (13) into one calculation ofexp(A.U) for the transition from
H"~1/2 to H™*'/2_ In the (4,4) scheme, the calculations of
wherel, is the 6x 6 identity matrix. The operataxp(A:V)  exp(c;A,U) andexp(c; A, U) can also be combined into one
is expressed similarly as calculation ofexp((cs + ¢1)AU). In this paper, we assume
_ that the permeability is constant throughout the simulation
exp(AV) = Lo+ AV (14) domain. For example, the detailed expressions ofHheand
Thus,exp(A.U) andexp(A, V) are obtained explicitely. The E. components at the third stage in ti¢,4) scheme are as

Sincel/? is zero,
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Fig. 1. (a) Time-step diagram of ttf&, 2) scheme (standard scheme). (b) Time-step diagram dfith®) scheme (proposed scheme).
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wheres (4,7, k+1/2),e0.(4, 4, k+1/2),e1,,(¢,j, k+1/2), The above basic formulation can be extended for a medium
ande. (¢, j, k + 1/2) are the permittivities for the simulation. with loss and/or a source. When the medium has conductivity,
The calculations for (18) and (19) are, respectively, representedtricesU, V, exp(A;U), and exp(A;V) are modified to

by exp(csA.U) and exp(dsA,V) in the boxes in Fig. 1(b). (20)—(23), shown at the bottom of this page, whefteis the
Equations (18) and (19) show that, in th& 4) scheme, the magnetic conductivityg is the electric conductivity, ands
changes in the electromagnetic-field values from one stageidahe 3 x 3 identity matrix, and the fourth-order symplectic
the next are calculated with the fourth-order space differenicgegrator propagator is still applicable. The fourth-order
operator. In the€2, 2) scheme, the changes are calculated witipproximations for exponential functions

the second-order space difference operator. Fig. 1(b) and (18) 9
and (19) show the simple iterative character ofithel) scheme. 1-4 + 4
Since the field data is successively rewritten by new data, no ad- exp(—q) z271§ (24)
ditional memory for temporary storage of internal stage data is 14+ 4.7
required. Thé4, 4) scheme is an improved version of & 2) 2 122
scheme for high accuracy. 1- 4.7
In this paper, the authors propose two methods for the setting 1 - exp(—q) ~ 10 6(2) (25)
of the permittivities for the simulation. When the spacial vari- 4 14+ 2q + L
ation of the permittivity is continuous, the permittivity at point 5 60

(4,5, k 4 1/2) can be used fory . (4,5, k +1/2), e2..(¢,J,k +  are useful for the numerical calculation ep(AUsy,) and
1/2),e1,4(i,4,k+1/2), andeg (4, 4,k +1/2). This method is  exp(A,Va,s). This modified scheme is also applicable to per-
referred to as method I. For the case of a dielectric interfacefictly matched layers (PMLs) [19]. The reflectivity of the PML
the simulated domain, the setting for the nodes in the vicinity @r the (4, 4) scheme is as low as that for tf& 2) scheme [20].

the interface has not been clarified completely. It is now being When the source exists, the term expressing it is added to the
studied. For the 2-D TM polarization case, with the interfacgxpressions for field evolution. For example, when theom-
located on the nodes of the magnetic components, methogohent of the current density. (z, v, z, ) is not zero, the term
brings second-order accuracy in the reflectivity and transmig>t3/5(; j L 4 1/2), where

sivity. This is proven by the extended discussion of the inter-

face condition for thé2, 2) scheme [18]. At present, the authorg»+3/5 <L i k4 1) - _ ds B
V. 2 <
€1

conjecture that the following method (method Il) gives accurate ik 1)
. . . . . 7J7 +

results for an ordinary problem with arbitrarily arranged dielec- 2
tric interfaces. The averaged permittivity over the segment be- o 1 5
tween(i + 1/2,4,k + 1/2) and (i — 1/2,4,k + 1/2) is used )L\t gkt (n + Ep=1cp)At
for e1 .(¢, 7,k + 1/2), the averaged permittivity over the seg-
ment betweerfi + 3/2, j, k + 1/2) and(i — 3/2,j,k + 1/2) (26)
for ez (¢, 7,k + 1/2), the averaged pgrmittivity over the segig added to the right-hand side of (19).
ment betweef, j+1/2,k+1/2) and(é, 5 —1/2,k+1/2) for
e14(4, 7,k + 1/2), and the averaged permittivity over the seg-
ment betweeri, j + 3/2,k + 1/2) and(¢,5 — 3/2,k + 1/2) _
for e,y (i, 5, k + 1/2). The features of the scheme are assessed by the solution

T growth factora, of a numerical wave mode in a grid. The factor

I1l. BASIC PROPERTIES OF THESCHEME

P
Uibs = < N{O} I3 ?O}R> 20)
Vabs = <s{—q]}2 s{—ol];ﬂg) 1)
* ( 1 —exp <— 0*>
AtO'
{0} ) I3
I3 {0}
1—ex><—£) )
eXp(AtVa_bs) = 4 R exp <_ At0> I (23)




1644 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 9, SEPTEMBER 2001

is the ratio of the field amplitude of the numerical mode at a TABLE I
time to that at the time before the time stap. To guarantee ~ COURANT STABILITY LIMITS (vu.ax) OF THE (2, 2) AND (4, 4) SCHEMES
numerical stability of the simulation, the inequality

2,2 4,4
ol <1 (27) @2 e

should be satisfied for all numerical modes. The condition in 2-D 0.707 0.910

(27) determines the maximum time-stap .., attainable with

the given space increments,, A, andA .. When the modulus 3-D 0.577 0.743

of the factor« is equal to one for all numerical modes under the
conditionA,; < A, nax, the scheme is nondissipative.

When the medium is uniform, the facter for the (4,4) 10 e D 22
scheme is given by (28)—(34), shown at the bottom of this
page, where:,, k,, andk, are, respectively, the components
of the wavenumber of the numerical mode in the y-, and
z-directions. Sinc€ is a real number, the condition in (27) is
equivalent to

]

Phase velocity error (%)

0.1 E- _E
1< < 1. (35) : ]
Moreover, if the condition in (35) is satisfied, the modulus of the 0.01F E
factor e is equal to one. Thus, thg, 4) scheme is nondissipa- F :
tive. The radian frequency of the numerical mode is expressed - | ]

as 0.001 10 20

= arccos(()' (36) Cells/wavelength
Ay

Fig. 2. Phase velocity errors as a function of cell numbers per wavelength on

. . " . e cubic lattice at the Courant stability limit.
By employing the numerical search on the condition in (35), y

A max IS Obtained. The phase velocity error of the scheme is
exammed using (36). stability limit of each scheme. The fourth-order accuracy of the

The stability of the scheme is assessed by the Courant d¢h4) scheme, which is built into it, is shown by the solid line.

bility limit 24,.x, Which is obtained from\, ...« for the cubic
grid as IV. MEMORY AND NUMBER OF COMPUTATIONS

A, The memory and number of the computations of (he2)
i (37) and(4,4) schemes for 3-D simulation are compared using as
A, D . ) ) h
the criterion the dispersion error of fier wavelength in a cubic
Table Il shows the Courant stability limits of ti2, 2) and(4,4) lattice. This criterion was proposed in 1993 by Shlageal.
schemes. The limit of thet, 4) scheme is 30% larger than thaf21]. To obtain this accuracy, the required cell number per wave-
of the(2, 2) scheme. Fig. 2 shows the maximum phase velocitlgngth N, is 7.1 for the(4, 4) scheme and 19.9 for the, 2)
error as a function of the cell numbers per wavelength at teseheme. On the other hand, the floating point operations per cell

Vmax = V0

a=CEVE-1 (28)
—1+< )ng{ vp A} nm+ny+77)}p (29)

Ip = Z Ci, dj1 Ci, de TGy djp + Z dh Cj, d7‘,2 Cjy * " dip Cj, (30)
1<y <y <ie <Ja < <ip <Jp <om 1<y <1 o <o K-+ i <Jp S
1
vg = (31)
VEH
97 (¢Thre /2 ihnda/2) _ (=3ka /2 _ Bika D /2)
o 32
Ne = J 247, (32)
27 (e—jkyAy/Q — ejkyAy/Q) — (6_3jkyAy/2 — egjkyAy/Q)
=] 33
My =J 247, (33)

9T (e9k=8e/2 _ ke D2/2) _ (o= 3ke A2 _ g3k A /2)

N =1 24Az

(34)
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Fig. 3. Comparison of the memory and number of computations in the
imulation f bi I der th diti f/iavelength di i
errrrg:lalon or cubic cells under the condifion clifiaveleng Ispersion Fig. 4. Phase velocity errors for th€E,; mode of the graded-profile fiber.
and time-steVoperation are 240 for th€4, 4) scheme and 30 for -4 2.2
the(2,2) scheme. The number of computations is evaluated 0.6
the product ofN..) to the fourth powerNoperation, andy L. sk o 7z Z %

The results are shown in Fig. 3. The memory usage fof4h#)
scheme is 4% that for th@, 2) scheme. The number of com-
putations is 10% that the2, 2) scheme.

0.4

8.4 pm =

%3
—

V. NUMERICAL EXAMPLES 0.2F

Phase velocity error (%)
=)
(1]
L

e
—_
T

A. 3-D Wave Propagation

This example is 3-D wave propagation guided by -Z.léhﬁ.é
graded-profile fiber. The index of refractior{r) is defined by S0 1 2 3 4 s

TM mode number

(=]
<

n(f,))Q :71307 0 S A S p (b)
2,2
N2 _ncop < 38 . . . .
71( ) =72 pST <00 ( ) Fig.5. Phase velocity errors of the TM modes of a 2-D step-profile waveguide.

(a) Schematic drawing of the waveguide configuration. (b) Errors for the grid
wherer is the distance from the fiber axis,,, is the core index, resolution of 15 cells/(wavelength in core region).
andp is the core radius. The HE modes of the fiber were ob-
tained analytically [22]. The propagation of tH&;; mode was the cell numbers per wavelength in the cokg/n.). The line
simulated and the phase velocity was compared to the anafgi-the (4, 4) scheme shows its fourth-order accuracy.
ical solution. Then., was 3.0 anc was 2.0um. The wave-
length in a vacuum\, was 1.570796(= = /2) pm. We used B. 2-D Wave Propagation
cubic cells. The fiber axis was set on the line defined:by 0

andy = 0. The simulated domain was defined by, y, z) = .The propagations 9f the guiQed mod(_es along the waveguide
(4.0 jim, £4.0 um, g, /2), where)g, is the wavelength in v_wth a step index profile were simulated in the 2-D TE polarlzg—
the fiber, which is expressed as tion case. The phase velocities were compared to the analytical
’ solutions. The refractive indexes of the core and cladding were
2 3.2and 1.0, respectively. The core width was s The wave-
A, = B f = 119525688 pm (39) length in a vacuum was 1.5am. The waveguide supports six

guided TM modes. The waveguide configuration is schemati-
whereg is the analytically obtained propagation constant. Faally illustrated in Fig. 5(a). A rectangular domain whose sides
the initial condition, analytically obtained values of electromagre along thex- andy-directions was prepared for the simula-
netic components were assigned to the nodes in the domdion. The sides along the-direction were two times longer than
Since thez-direction length of the domain was equal to théhose along thg-direction. The waveguide was set along the di-
wavelength in the fiber and the magnitude of the field near tlagonal line. The waveguide was inclined to the coordinate axis
boundaries defined by = +4.0 um ory = +4.0 pm was neg- at an angle of 26 = arctan(1/2)]. The waveguide direction
ligibly small, the periodic boundary condition could be appliedias almost intermediate between the maximum-phase-velocity
for the simulation. Method | was used to set the permittivitiedirection (45) and the minimum-phase-velocity directiorf0
for the simulation. The Courant—Friedrichs—Levy (CFL) numef the (2,2) scheme. For the initial condition, the analytically
bers were 0.743 for thgd, 4) scheme and 0.577 for tH@,2) obtained values of the electromagnetic components are assigned
scheme. Fig. 4 shows the phase velocity error as a functiontothe nodes in the domain. The length of the diagonal line was
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adjusted to be five times the wavelength in the wavegide -0 = (2,2
which is expressed as . —— (4,4)
v v T I
2 (6= 10000 S/m)
)\va:/_j (40) .o-__-~
~ o1} =0~ 3
whereg is the propagation constant of the mode. By this selec- & 0
tion of the length of the diagonal line, the assigned field values E
are periodic at the boundary of the domain. Thus, the periodic o 00LF E
boundary condition was used for the simulation. The domain =
was covered with square cells whose spacing was 1/15 of the ]
free propagation wavelength in the core region. Method Il was /2 0001 3
used to set the permittivities for the simulation. The CFL num-
bers were 0.743 for thét, 4) scheme and 0.577 for thg, 2) 0.0001 . e
scheme. Fig. 5(b) shows the phase velocity error in the TM 10 15 20
modes for the structure. For all guided modes, the error of the Cells/wavelength

(4’ 4) scheme is |§S§ th"’.m 1/10 that of @2) SChem.e' The Fig. 6. Decay rate errors as a function of cell numbers per wavelength.
(4,4) scheme exhibits highly accurate performance in the sit-

uation where the refractive index contrast is more than 60%
In order to obtain the same accuracy level as that of#hé)

scheme with 15 cells/core-wavelength, tt#2) scheme re- 34 um T~
) . : ) I,
quires the grid resolution of 60 cells/core-wavelength. /F&175 :E

C. Lossy Medium

This example is the simulation of the plane-wave propagatio
in a medium with the electric conductivity. Whenu, ando are
spatially uniform and-* = 0, an analytical calculation shows
that a plane wave decays as follows:

44 um

H.(z,y,7t) =sin(kex + kyy — wt)e ™ (41) PML layers -15 <10 05 00 05 10 15
nk, . X (um)
E.(z,y,2,1t) :k—;{(—w) sin(k,x + kyy — wt) @ ®
+ T Cos(kxx + kyy - wt)}c_ﬂ Fig. 7. Unidirectional excitation of th&'M, mode of the 2-D step-profile
waveguide. (a) Schematic drawing of the simulated region. (b) Exdifed
(42) distribution.
ko .
E 2t) = — {—51k + kyy — wt o .
oy 21) k2 (—w)sin(hzz + kyy —wt) D. Unidirectional Excitation
+ 7 cos(kyw + kyy — wt)}(i_” This example is the unidirectional excitation of tH&/J,
(43) mode of a 2-D step-profile waveguide. For t{#2) scheme,
T such excitation is outlined in [23]. In the excitation, the
T 7o transverse components of the excited mode in the vicinity of
k? =ep(w? +77) (44) the incident line are intermittently incorporated with suitable

phases in the calculation of each stage. The manner of excita-
wherek = (k.. k,,0) is the wave vecto is the angular fre- tion is extended for thé4, 4) scheme. The simulated domain
guency, and- is the decay rate. The other field components afe schematically illustrated in Fig. 7(a). The wavelength in a
zero. In this examples, 11, o, w, andk, /k, were set te, pi9, vVacuum was 1.5um. The domain with the waveguide was
10* S/m, 1213.95/ps, and 1/2. For the initial condition, the fieldurrounded by 16 PML layers. Fig. 7(b) shows the contour plot
values expressed by (41)—(43) are assigned to the nodes inathél. distribution. A, andA, were 0.0125:m and the CFL
rectangular domain similar to that in the previous numerical erumber was 0.7. The profiles agree with the analytical ones.
ample. That is, the sides of the domain along theirection The Lz-normed error of thet, profile is less than 10°. The
were two times longer than those along ihdirection and the example shows the specific waveguide mode can be excited in
length of the diagonal line was five times the wavelength. Tisémulations using thé4, 4) scheme.
decay of the wave was simulated using a periodic boundary con- i
dition. The cells were square. The CFL numbers were 0.743 for Reflection at a Coated Facet
the(4,4) scheme and 0.577 for tf{e, 2) scheme. Fig. 6 shows In this example, waveguide facet reflection was simulated in
the decay rate errors as a function of the cell numbers per watlee 2-D TM polarization case. The waveguide was truncated and
length. This figure shows the fourth-order accuracy of(thd) the facet was coated with a dielectric layefT&, mode, which
scheme for a medium with loss. was excited by the method described in the previous section, is
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Fig.8. Simulated reflectivity of th& E, mode at the coated facet as a function 9
of the cell number per wavelength in a vacuum, and a schematic drawing of the[ ]
simulated domain (upper left-hand-side quarter). [10]

incident from the waveguide to the coating. The simulated dot*!

main is illustrated in the upper left-hand-side quarter of Fig. 8.
The whole domain was surrounded by a 16-cell PML absorber.
The effectiveness of the PML absorber in the simulation of re[*?!
flection at the waveguide facet has been demonstrated in [24].
The wavelength in a vacuury was 0.5um. The refractive in-  [13]
dexes of the coating were 1.24, 1.25, and 1.26. The cells were
square and thé\, values were 0.05, 0.025, 0.0125, 0.006 25,14
and 0.003 125:m in each simulation. The material interfaces
were located on the nodes of the magnetic components. MethdtP!
| was used to set the permittivities for the simulation. The CFLyg
number was 0.7. The reflectivity as a function of the cell num-
bers pen\, is shown in Fig. 8. The analytically calculated reflec- [17]
tivities based on the free-space radiation mode method [25] are
also shown by the thin dotted—dashed lines. As the cell numbets;
increases, the reflectivity obtained by thé 4) scheme con-
verges more rapidly to the analytically calculated reflectivity

than that obtained by thg, 2) scheme. [19]

[20]
VI. SUMMARY

A new 3-D explicit fourth-order FDTD scheme has been pro-
posed based on the symplectic integrator propagator. The badfd!
properties of the scheme have been examined theoretically. Sev-
eral numerical examples have demonstrated its stable and accu-
rate performance. The scheme is expected to be a powerful toGH
for precise simulation over an extended domain. [23]
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